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We present an analytical formalism elucidating how infor-
mation is stored in chirped optical probes by describing the
effects of sinusoidal temporal modulations on the electric
field. We show that the modulations produce spectral side-
bands which can be interpreted as temporal sidebands due
to the time-wavelength mapping, an effect we call tempo-
rally encoded spectral shifting (TESS). A derivation is pre-
sented for the case of chirped-pulse spectral interferometry
showing how to recover both the amplitude and the perio-
dicity of the modulation from a Fourier transform of the
interferogram. The TESS effect, which provides an intuitive
picture for interpreting pump-probe experiments with
chirped pulses, is illustrated for probing wakefields from
a laser-plasma accelerator. © 2016 Optical Society of America
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Detection methods based on chirped pulses have become stan-
dard for the single-shot measurement of ultrafast, time-varying
phenomena because of the convenient access to the time domain
offered by the time-wavelength correlation. Applications include
photographing plasma waves in laser-plasma accelerators [1],
diagnosing relativistic electron beams [2–5] via the mapping
of terahertz-pulse waveforms [5,6], and measuring equation-
of-state evolution in strongly compressed materials [7]. A com-
plication of this approach is that the imprinting process alters the
relationship between frequency and time in the probe, limiting
the applicability of the wavelength as a metric of the time coor-
dinate. It has been shown that the direct interpretation of spectral
features as temporal features (i.e., “spectral encoding”) results in
distortions that depend on the degree of chirp and the temporal
sharpness of the features [3,8,9]. This problem has been ad-
dressed in various ways, including (1) the use of spectral encod-
ing in a regime where distortions can be neglected (which limits
temporal resolution) [9], (2) use of more sophisticated analysis
methods that account for the imprinting effects [3], (3) the use of

nonlinear cross-correlation with a short pulse to convert tempo-
ral features into spatial features [6], and (4) the use of frequency
domain interferometry, which allows full reconstruction of the
temporal field of the probe [1]. However, while the signal-recov-
ery process has been detailed for specific scenarios, there has been
no treatment of how the signal-imprinting process affects the
time-frequency structure of chirped pulses in general. Thus, a
heuristic picture ensures the proper interpretation and analysis
of single-shot data based on chirped pulses.

Here we present a detailed analysis of how sinusoidal temporal
modulations modify the structure of chirped pulses which pro-
vides a model for understanding time-varying signal-imprinting
with chirped pulses in general. The signal can be imprinted onto
the phase, amplitude or intensity of the probe pulse. We show
that, in all cases, the modulations generate spectrally shifted cop-
ies (i.e., satellites) of the incident spectral field which manifest
themselves in the time domain due to the probe chirp. The analy-
sis is presented in the framework of approach 4, for which we
derive analytic expressions for the modulated spectral field, the
spectral interferogram, and the Fourier transform (FT) of the in-
terferogram. We show how to extract the amplitude and fre-
quency of a sinusoidal modulation directly from the FT and
apply the results to the plasma wave measurements of [1],
revealing how TESS complements the previous analysis.

It is well known that sinusoidal modulations of a carrier wave
create spectrally shifted copies of the waveform, resulting in side-
bands that can be used to extract the modulation signal. This effect
is the basis for audio encoding in AM and FM radio and can be
used for encoding signals of any frequency onto suitable carriers,
e.g., terahertz information onto an optical carrier [10]. Normally,
this method requires the sideband to be spectrally distinct from
the carrier, which prevents modulation frequencies smaller than
the probe bandwidth from being resolved. For chirped probe
pulses, however, time provides an extra dimension that allows
the satellites to remain isolated from the incident pulse, even when
the spectral shift is significantly less than the pulse bandwidth
(Fig. 1), thereby increasing the accessible modulation frequency
range. These sub-bandwidth spectral shifts can be resolved as time
domain sidebands by using TESS.

We start the analysis for the case of phase modulations. The
generation of spectral sidebands can be easily derived for the probes
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of an arbitrary electric field structure. Let E0�t� denote the temporal
electric field of an unmodulated probe pulse. The modulated probe
is then given by Epr�t� � E0�t�eiϕ�t�, where ϕ�t� � ϕ0 sin Ωt ,
and the probe spectral field is the FT of Epr�t�:

Epr�ω� �
1ffiffiffiffiffi
2π

p
Z

∞

−∞
E0�t�eiϕ�t�e−iωtdt : (1)

The sinusoidal phase can be expanded as a sum of carrier
waves:

eiϕ0 sin Ωt �
X∞
k�−∞

Jk�ϕ0�eikΩt ; (2)

where the amplitudes, Jk�ϕ0�, are Bessel functions of the first
kind. Inserting this expression into Eq. (1), we obtain

Epr�ω� �
X
k

Jk�ϕ0�E0�ω − kΩ�; (3)

where E0�ω� is the FT of E0�t� and, henceforth, sums from −∞
to ∞ are implied. Equation (3) shows that the sinusoidal modu-
lation generates a series of copies (orders) of the original spectral
field, frequency-shifted by integer multiples of Ω with amplitudes
that depend on the strength of the modulation, ϕ0. Thus, the
modulation is the temporal analogue of a diffraction grating.

Retrieving the temporal structure requires specification of the
pulse. For simplicity, we chose a linearly chirped Gaussian pulse
which can be written in the frequency domain as

E0�ω� � Ae−
1
2�1�iσ��ω−ω0δω �2 ; (4)

where δω denotes the bandwidth and σ represents the chirp.
Figure 1 shows that, in this case, the original pulse and the
generated satellites appear as diagonal strips in time-frequency
(t, ω) space. Due to the chirp, the instantaneous bandwidth
of each strip (i.e., the spectral width of each order in the
t � 0 lineout) is significantly less than the original temporally
integrated bandwidth, (i.e., the spectral width, δω, of the spec-
tral projection of any order), allowing the bands to remain iso-
lated even whenΩ < δω. Notice also that time-lineouts intersect
multiple orders, but at distinct temporal locations, which is the

basis for TESS. Techniques that integrate the probe in time
or frequency clearly will not resolve the details of the diagonal
structure. However, by doing spectral interferometry with a sim-
ilarly chirped, but delayed, reference pulse, the important coor-
dinate becomes the relative delay, which is independent of
wavelength for linearly chirped pulses. An FT of the spectral
interferogram effectively provides a histogram of energy versus
relative delay, allowing integration over frequency without de-
stroying the time structure.

The reference pulse is given by Er � E0�t − Δt�, which, in
the spectral domain becomes Er�ω� � E0�ω� exp iωΔt. The
spectral interferogram has the form: S�ω� � jEpr�ω�j2�
jEr�ω�j2 � Epr�ω�E�

r �ω� � c:c:, which expands to

S�ω� �
X
n;m

Jn�ϕ0�Jm�ϕ0�E�
0�ω − nΩ�E0�ω −mΩ�� jE0�ω�j2

�
X
k

Jk�ϕ0�E�
0�ω�E0�ω − kΩ�e−iωΔt � c:c: (5)

The interferogram contains contributions from all possible pair-
ings of the probe orders and the reference. The first term rep-
resents the set of interferences of the orders with each other, the
second term is the reference self-interference, and the third and
fourth terms represent the interferences between the probe orders
and the reference. In the spectral domain, all of these terms over-
lap, making it impossible to isolate a particular pairing but, by
transforming to the time domain via an FT, the terms get organ-
ized according to the temporal delay between the two interfering
elements. The FT of the interferogram is

S�t� �
X
m

gm�ϕ0; t ;Ω�H �t; mΩ� �H �t; 0�

�
X
k

Jk�ϕ0�H �t − Δt; kΩ� � c:c:; (6)

H �t;Ω� ≡ 1ffiffiffiffiffi
2π

p
Z

∞

−∞
E�
0�ω�E0�ω − Ω�eiωtdω (7)

gm�ϕ0; t;Ω� ≡
X
n

Jn�ϕ0�Jm�n�ϕ0�einΩt : (8)

From the fundamental theorem of FTs, the function H �t;Ω�
represents the time domain convolution between the reference
and an order shifted by Ω. When ϕ0 � 0, the FT has a well-
known three-peak structure [Fig. 2(a)] given by S�t� �
2H 0�t� �H 0�t − Δt� �H 0�t � Δt�, where

H 0�t� ≡H �t; 0� � δω
A2ffiffiffi
2

p eiω0t e−
1
4�t∕δt�2 ; (9)

and δt ≡ 1∕δω is the coherence time of the pulse. The side peaks
at t � �Δt correspond to the reference-probe interference
terms which, in general, are used to extract the phase information
from the experiment. Equation (6) shows that, when ϕ0 ≠ 0, the
structure of the side peak is modified, yielding a series of satellites
[Fig. 2(b)] described by

H �t; kΩ� � f �kΩ�ei12kΩtH 0�t � μkΩ�; (10)

which are temporally shifted copies of the unmodulated side
peak scaled by f �kΩ�� expf−1

4�kΩδω�2g. The factor, μ≡σ∕δω2,
is a proportionality constant that relates frequency to time in
the chirped pulse. The temporal representation of the spectral
shift,Ω, is thus given by T ≡ μΩ. The function f �kΩ� describes
the degree of the spectral overlap between the kth order and the

Δ

Fig. 1. Depiction of the time-frequency representation of a linearly
chirped probe pulse modulated by a sinusoidal temporal phase of fre-
quencyΩ and an identically chirped, but unmodulated and temporally
shifted, reference pulse.
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reference and, therefore, defines via the factor μ the time window
in the FT where interference information can be stored. Thus,
whenΩ ≫ δω, TESS is ineffective since f �Ω� ≈ 0. In this case,
however, TESS is not needed since the spectral shift is larger than
the bandwidth and can be detected directly from the spectrum.
To extract TESS information, the satellites must be distinguish-
able from each other (i.e., T > δt), which allows the modulus
squared of the FT to be written, ignoring cross terms as

jS�t�j2�
X
m

jg2m�ϕ0;t ;Ω�j2f 2�mΩ�jH 0�t�mT �j2�jH 0�t�j2

�
X
k

J2k�ϕ0�f 2�kΩ�jH 0�t −Δt�kT �j2�jc:c:j2; (11)

where jc:c:j2 describes structure in the negative time domain.
Satellites of the central peak (at t � mT ) are also created by the
probe orders interfering with each other, as described by the first
term of Eq. (6). In this case each satellite is the sum of all order-
order pairings with the same difference m in the order parameter.
The interference modulates the envelopes, described by
jgm�ϕ0;t ;Ω�j2 which has zeros at t j�2πj∕Ω, where j are integers.

Although, in principle, Eq. (11) shows that infinitely many
satellites are generated by the modulation, in practice, often
only the m � 0, 1 and k � 0, �1 peaks will be detectable.
To extract the frequency of the modulation, the chirp factor
μ must be well characterized. Then Ω can be determined from
the time difference, T , between the k � �1 and k � 0 peaks.
The modulation strength, ϕ0, can be extracted from the
ratio, β, of the k � �1 and k � 0 peak amplitudes in
jS�t�j2 by inverting β � f 2�Ω��J1�ϕ0�∕J0�ϕ0��2 to get
ϕ0 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4fβ∕f 2�Ω� � 1∕4g1∕2 − 2

p
. The absolute peak ampli-

tudes should not be used to extract ϕ0 because, unlike β,
they are affected by factors such as intensity and alignment mis-
matches between the probe and reference.

For small modulations, this formalism can be extended to
phase shifts of an arbitrary form using eiϕ�t� ≈ 1� iϕ�t�, result-
ing in: Epr�ω� ≈ E0�ω� � iffiffiffiffi

2π
p

R
∞
−∞ Φ�ξ�E0�ω − ξ�dξ, where

Φ�ξ� is the FT of ϕ�t�. A comparison with Eq. (3) shows

that the modulation creates a continuum of copies of the
original spectral field shifted by ξ. The side peak term [i.e.,
3rd term of Eq. (6)] becomes S�t�side ≈ H 0�t − Δt��
iffiffiffiffi
2π

p
R
∞
−∞ Φ�ξ�f �ξ�H 0�t − Δt � μξ�dξ, showing that the fre-

quency content,Φ�ξ�, of the modulation gets mapped onto time
by the TESS effect. More precisely, the satellite generated by the
modulation (2nd term of S�t�side ) is the convolution of H 0�t�
with the time domain mapping of Φ�ξ� × f �ξ�, which repre-
sents the modulation spectrum in the time domain.

The formalism for amplitude and intensity modulations is
similar to that of phase modulations. The amplitude modula-
tions can be written as Epr�t� � E0�t� × �1� a0 cos Ωt�, so
that Eq. (3) becomes Epr�ω� � ΣkAk�a0�E0�ω − kΩ�, where
A0 � 1, A�1 � a0∕2 and Ajkj≥2 � 0. The rest of the analysis
is then identical to the phase case, except that Jk�ϕ0� must be
replaced with Ak�a0�. Similarly, the intensity modulations can be
expressed by I pr�t� � I 0�t� × �1� b0 cos Ωt�, where I pr�t� �
jEpr�t�j2 and I 0�t� � jE0�t�j2 are the probe modulated and
unmodulated temporal intensity profiles, respectively. The
modulated spectral field can be expressed using only two terms
as Epr�ω� � ΣkBk�b0�E0�ω − kΩ�, where B2

0 � B2
−1 � 1,

2B0B−1 � b0, and all other coefficients are zero. As in the
amplitude case, Jk�ϕ0� must be replaced with Bk�b0�.

To demonstrate the concepts presented here, TESS was
used to reanalyze the data obtained from previous experiments
in the imaging of plasma waves from a laser-plasma accelerator
(LPA) [1]. LPAs are compact accelerators which use intense
(∼1018 W∕cm2) short (∼30 fs) laser pulses to excite plasma-
density waves (wakefields) which can accelerate electrons with
gradients (∼100 GeV∕m) that far exceed those of conventional
accelerators. The amplitude and frequency of the plasma waves,
which are sensitively affected by the highly nonlinear interac-
tion of the laser pulse with the plasma, govern the behavior of
the accelerator and, thus, are important to characterize. The
wakefields were generated by focusing the intense pump pulses
onto a supersonic jet of helium gas. The leading edge of the
pump photo-ionized the gas, generating a sharp transition in
electron density known as an ionization front, followed by peri-
odic wakefield oscillations in the electron density. A synchron-
ized, linearly chirped probe pulse at 400 nm copropagated with
and temporally overlapped both the ionization front and the
wake oscillations, resulting in temporal modulations of the probe
phase. A second linearly chirped pulse preceded the probe by two
picoseconds and was used as a reference for the interferometry.

In the original analysis [1], frequency domain holography
(FDH) was used to reconstruct the temporal electric field of the
probe pulse, resulting in detailed images of the 2D spatio-temporal
structure of the wakefields. Thus, critical features such as wakefield
curvature and periodicity were obtained [Fig. 3(a)]. A disadvantage
of FDH, however, is that the wakefield images are formed from an
average of the structures generated at each longitudinal location of
the interaction. Therefore, longitudinal variations in the wakefield
periodicity caused by plasma-density gradients resulted in a mea-
sured wakefield amplitude which was significantly smaller than the
maximum generated, an effect confirmed by simulation [1].

TESS, which requires only a single FT operation, offers a com-
plementary analysis that allows access to different aspects of the
information stored in the data. Although no images are formed,
information about both the wakefield frequency and amplitude
are obtained. Figure 3(b) shows the TESS analysis for the wake
image shown in Fig. 3(a). The k � −1 and k � �1 satellites are
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Fig. 2. Modulus squared of S�t� on a log scale. Only the �t side is
shown, since S�t� is symmetric about t � 0. (a) Unmodulated probe.
(b) Modulated probe for ϕ0 � 1, σ � 10, and Ω∕δω � 1. The dot-
ted blue and solid red lines are the spectral overlap functions for the 1st
and 2nd orders, respectively.
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clearly visible, with a transverse spatial extent that matches the
wakes in Fig. 3(a). The broad feature extending to the left of
the side peak, from 2.0 down to 1.4 ps is caused by the ionization
front, which strongly shifts the portion of the probe spectrum that
it overlaps. Since the ionization front is step-function-like, the
spectral shifting is broad and asymmetric in the blue direction,
which corresponds to the left side of the k � 0 peak for our chirp.
The large degree of spectral shifting translates to a large range of
delays in the FT, due to the TESS effect, which is what is seen. In
addition, as expected, the spatial extent of this broad feature co-
incides with that of the plasma in 3(a). The ionization front and
wakefield features are also visible in the m � 1 satellite to the
right of the central t � 0 peak. In this case, the multiple ele-
ments of gm�ϕ0; t;Ω� interfere with each other, causing time
domain fringes. The vertical bands at 0.8, 1.25, and 2.9 ps
are noise features from prepulses in both the probe and reference.

The wake amplitude was determined from the k � −1 peak,
which was not obscured by the ionization-front feature. A modu-
lation strength of ϕ0 � 0.8 rad was obtained for the wake in 3(a),

corresponding to a wake amplitude of δne∕ne ≈ϕ0cω∕Lω2
p ≈0.1,

where L ≈ 1.5 mm was the interaction length, and c is the
speed of light. For comparison, the wake amplitude recovered
from Fig. 3(a) was only δne∕ne ≈ 0.055. Since contributions
to the k � �1 satellites from target regions with differing plasma
densities do not overlap in the FT, the averaging issue experienced
with FDH is to an extent mitigated; thus, a larger estimate of the
wake amplitude from the TESS analysis is to be expected.

The dependence of the wake frequency on electron density,
ωp�ne�, was also determined from the position of the k � −1
peak [Fig. 3(c)], mirroring the analysis of Matlis et al. [1], using
FDH-generated wake images. The TESS effect can be clearly seen
in the movement (from 2.2 to 2.7 ps) of the k � �1 satellites
with density. The dashed lines indicate the expected satellite
locations, assuming Ω � ωp, where ωp is the plasma frequency.
In Fig. 3(d), the k � −1 satellite positions (red dots) were used to
compute the k � �1 satellite locations (blue squares), to confirm
their symmetric placement about the k � 0 peak and to help
distinguish the k � �1 wake from ionization-front features.

In conclusion, our analysis allows a connection to be drawn
between the frequency of a temporal modulation and the position
of the corresponding signal in the time domain of the FT. This
connection enables interpretation of the complex features in the
FT which can improve the extraction of information, even for
cases where the modulations are not sinusoidal. The interpretation
is particularly important for defining limits for numerical window-
ing in the processing of spectral interferograms. The analysis pre-
sented here demonstrates clearly that the information about the
modulations is not contained in the primary side peak of the FT,
as is often assumed, but rather in the satellites, which may be
significantly separated from the primary peak in the time domain.
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